Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor
نویسندگان
چکیده
Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy), reduced graphene oxide (RGO), and gold nanoparticles (nanoAu) biocomposite on a glassy carbon electrode (GCE). The electrochemical behaviors of PPy-RGO-nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au3+) in aqueous solution, a PPy-RGO-nanoAu biocomposite was synthesized on GCE. Each component of PPy-RGO-nanoAu is electroactive without non-electroactive substance. The obtained PPy-RGO-nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about -0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM-2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3) with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy-RGO-nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor.
منابع مشابه
Electrochemical production of Graphene Oxide and its application as a novel Hydrogen Peroxide sensor
Herein, graphene oxide is produced by electrochemical oxidation method from graphite rod to examine its hydrogen peroxide sensing ability. The electrochemically produced graphene oxide is characterized by SEM and XRD. A few layers of Graphene Oxide(GO) sheets and corrugations in graphene sheets appeared intensely crumpled and folded into a typical wrinkled structure after electrochemical oxidat...
متن کاملReduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor
Introduction: Growing demands for ultrasensitive biosensing have led to the development of numerous signal amplification strategies. In this report, a novel electrochemiluminescence (ECL) method was developed for the detection and determination of caspase-3 activity based on reduced graphene oxide sheets decorated by gold nanoparticles as signal amplification element and horseradish peroxidase ...
متن کاملHighly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملTernary Composite of Hemin, Gold Nanoparticles and Graphene for Highly Efficient Decomposition of Hydrogen Peroxide
A ternary composite of hemin, gold nanoparticles and graphene is prepared by a two-step process. Firstly, graphene-hemin composite is synthesized through π-π interaction and then hydrogen tetracholoroauric acid is reduced in situ by ascorbic acid. This ternary composite shows a higher catalytic activity for decomposition of hydrogen peroxide than that of three components alone or the mixture of...
متن کاملFabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode
A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it...
متن کامل